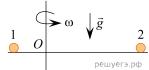

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

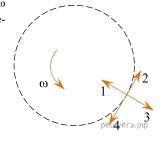
1. На рисунке представлен график зависимости координаты велосипедиста от времени его движения. Начальная координата x_0 велосипедиста равна:



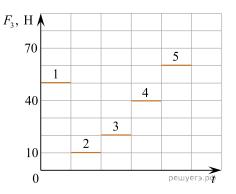
1) -7 m 2) -6 m 3) -5 m 5) -2 M

2. Зависимость проекции скорости v_x материальной точки, движущейся вдоль оси Ox, от времени t имеет вид: $v_x = A + Bt$, где $A = 6.0 \text{ м/c}, B = 4.0 \text{ м/c}^2$. В момент времени t = 2.0 с модуль скорости υ материальной точки равен:

- 1) 2.0 m/c 2) 4.0 m/c 3) 6.0 m/c 4) 8.0 m/c


3. Тонкий стержень длины l = 1,6 м с закрепленными на его концах небольшими бусинками 1 и 2 равномерно вращается в горизонтальной плоскости вокруг вертикальной оси, проходящей через точку O (см. рис.). Если модуль угловой скорости вращения стержня $\omega = 4,0$ рад/с, а модуль центростремительного ускорения первой бусинки $a_1 = 5.6 \text{ м/c}^2$, то модуль центростремительного ускорения a_2 второй бусинки равен:

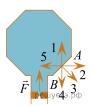
- 1) 0.80 m/c^2 2) 8.0 m/c^2 3) 12 m/c^2 4) 20 m/c^2
- 5) 25 m/c^2


4. Тележка движется по окружности против часовой стрелки с постоянной угловой скоростью ω (см. рис.). Установите соответствие между линейной скоростью \vec{v} движения тележки и ее направлением, а также между ускорением \vec{a} тележки и его направлением:

Физическая величина	Направление	
A) Линейная скорость $\vec{\upsilon}$ движения тележки Б) Ускорение \vec{a} тележки	1 — Стрелка 1 2 — Стрелка 2 3 — Стрелка 3 4 — Стрелка 4	

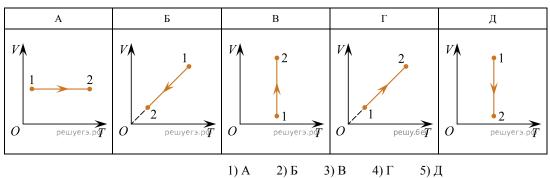
- 1) A1_{b2};
- 2) A2_B1;
- 3) А2Б3;
- 4) A254;
- 5) A4_B1.

5. Тело двигалось в пространстве под действием трёх постоянных по направлению сил $\vec{F}_1,\ \vec{F}_2,\ \vec{F}_3.$ Модуль первой силы $F_1=10\ \mathrm{H},$ второй — $F_2=35\ \mathrm{H}.$ Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:


1) 1

2) 2

- 3)3
- 5) 5


4) 4


6. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:

1) 1 2) 2 3) 3 4) 4 5) 5

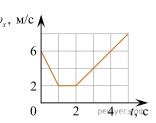
7. На графике в координатах (p, V) представлен процесс $1 \rightarrow 2$ в идеальном газе, количество вещества которого постоянно. В координатах (V, T) этому процессу соответствует график, обозначенный буквой:

0

8. При изотермическом сжатии давление идеального газа изменилось от p_1 = 0,15 МПа до p_2 = 0,18 МПа. Если конечный объем газа V_2 = 5,0 л, то начальный объем V_1 газа равен:

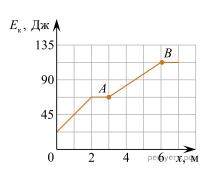
4) 7,5 л

5) 8,2 л

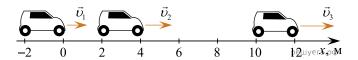

9. Идеальный газ находится в баллоне вместимостью $V = 3.6 \text{ м}^3$ под давлением p = 0.46 кПа. Если температура газа T = 300 K, то число N всех молекул газа в баллоне равно:

1)
$$1,0\cdot 10^{23}$$
 2) $2,0\cdot 10^{23}$ 3) $3,0\cdot 10^{23}$ 4) $4,0\cdot 10^{23}$ 5) $5,0\cdot 10^{23}$

10. Установите соответствие между прибором и физической величиной, которую он измеряет:

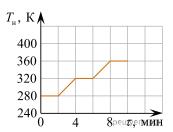

	А. Вольтметр	1) сила тока		
	Б. Барометр	2) электрическое напряжение		
		3) атмосферное давление		
1) A1Б2	2) А1Б3	3) А2Б1	4) А2Б3	5) АЗБ2

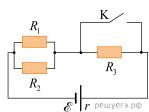
11. Материальная точка массой m=2,5 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент времени t=4 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... H.



12. С помощью подъёмного механизма груз равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени $\Delta t = 10$ с после начала подъёма груз находился на высоте h = 50 м, продолжая движение. Если сила тяги подъёмного механизма к этому моменту времени совершила работу A = 44 кДж, то масса m груза равна ... кг.

13. На рисунке приведён график зависимости кинетической энергии E_{κ} тела, движущегося вдоль оси Ox, от координаты x. На участке AB модуль результирующей сил, приложенных к телу, равен ... H.

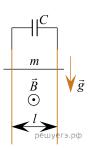

14. На рисунке представлены фотографии электромобиля, сделанные через равные промежутки времени $\Delta t=2,0$ с. Если электромобиль двигался прямолинейно и равноускоренно, то в момент времени, когда был сделан третий снимок, проекция скорости движения электромобиля υ_x на ось Ox была равна ... км/ч.


15. В закрытом сосуде вместимостью V=1,50 см 3 находится идеальный газ $\left(M=32,0\frac{\Gamma}{\text{моль}}\right)$, средняя квадратичная скорость поступательного движения молекул которого $\langle \upsilon_{\text{KB}} \rangle = 300 \; \frac{\text{M}}{\text{c}}$. Если число молекул газа в сосуде $N=4,00\cdot 10^{20}$, то давление p газа в сосуде равно ... кПа. (Число Авогадро — $6,02\cdot 10^{23}$ моль $^{-1}$.)

16. Воздух (c=1 кДж/(кг · °C)) при прохождении через электрический фен нагревается от температуры $t_1=20$ °C до $t_2=60$ °C. Если мощность, потребляемая феном, P=1,0 кВт, то масса m воздуха, проходящего через фен за промежуток времени $\tau=10$ мин, равна ... кг.

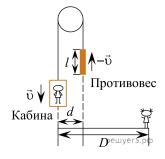
17. На рисунке изображен график зависимости температуры $T_{\rm H}$ нагревателя тепловой машины, работающей по циклу Карно, от времени τ . Если температура холодильника тепловой машины $T_{\rm X}=-3$ °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.

18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=4{,}00$ Ом, $R_3=2{,}00$ Ом. По цепи в течение промежутка времени $t=20{,}0$ с проходит электрический ток. Если ЭДС источника тока $\epsilon=12{,}0$ В, а его внутреннее сопротивление $r=2{,}00$ Ом, то полезная работа $A_{\rm полезн.}$ тока на внешнем участке цепи при разомкнутом ключе K равна ... Дж.



19. Зависимость силы тока I в нихромовом $\left(c=460\frac{\mathcal{I}_{\mathrm{K}\Gamma}}{\mathrm{K}\Gamma}\right)$ проводнике, масса которого $\mathit{m}=30$ г и сопротивление $\mathit{R}=1,3$ Ом, от времени t имеет вид $\mathit{I}=\mathit{B}\sqrt{\mathit{D}\mathit{t}}$, где $\mathit{B}=60$ мА, $\mathit{D}=2,2$ с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\mathit{\Delta}\mathit{t}=3,0$ мин после замыкания цепи изменение абсолютной температуры $\mathit{\Delta}\mathit{T}$ проводника равно ... К.

20. Две частицы массами $m_1=m_2=0,400\cdot 10^{-12}~{\rm Kr}$, заряды которых $q_1=q_2=1,00\cdot 10^{-10}~{\rm Kr}$, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние $l=100~{\rm cm}$ между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=50,0~\frac{{\rm M}}{c}$, а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.

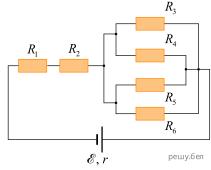

21. В однородном магнитном поле, модуль индукции которого B=0,020 Тл, а линии индукции горизонтальны, «парит» в состоянии покоя металлический $\left(\rho=2,7\,\frac{\Gamma}{{\rm CM}^3}\right)$ стержень. Ось стержня горизонтальна и перпендикулярна линиям магнитной индукции. Если сила тока в стержне I=54 А, то площадь поперечного сечения S стержня равна ... мм 2 .

22. В однородном магнитном поле, модуль индукции которого B=0,35 Тл, находятся два длинных вертикальных проводника, расположенные в плоскости, перпендикулярной линиям индукции (см. рис.). Расстояние между проводниками l=12,0 см. Проводники в верхней части подключены к конденсатору, ёмкость которого C=1 Ф. По проводникам начинает скользить без трения и без нарушения контакта горизонтальный проводящий стержень массой m=2,1 г. Если электрическое сопротивление всех проводников пренебрежимо мало, то через промежуток времени $\Delta t=0,092$ с после начала движения стержня заряд q конденсатора будет равен ... **мК**л.

23. На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=546$ нм дифракционный максимум четвертого порядка ($m_1=4$) наблюдается под углом θ , то максимум пятого порядка ($m_2=5$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите в нанометрах.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии $D=8.0\,$ м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной $I=4.1\,$ м, движущегося на расстоянии $d=2.0\,$ м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3.0\,$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

25. Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

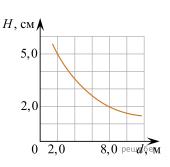

26. Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal E=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90.0$ Вт. Если внутреннее сопротивление источника тока r=4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4 \, \frac{\mathrm{pag}}{\mathrm{c}},\,$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

